
Lavanya Ramakrishnan

LRamakrishnan@lbl.gov

Tigres: Template Interfaces for
Agile Parallel Data-Intensive

Science

Google says there are a lot of workflow tools
available ….

2,870 results
237,000 results for “workflow tools”

MapReduce/Hadoop

Tigres: Design templates for common scientific
workflow patterns

"LightSrc"
Domain
templates

Base Tigres
templates

Scale up

Application
"LightSrc-1"

Application
"LightSrc-2"

Create and
Debug

Share

Create and
Debug

Workflow Library: Implement templates as a library in an
existing language
Basic Templates: Sequence, Parallel, Split, Merge

Key Aspects of Tigres

•  Targeted for large-scale data-intensive workflows
–  Motivated by “MapReduce” model

•  Library model embedded in existing languages such
as Python and C
–  “Extend current scripting/programming tools”
–  API-based, embedded in code

•  Light-weight execution framework
–  “As easy to run as an MPI program on an HPC resource”
–  No persistent services

•  User-Centered Design Process
–  Get feedback from user continuously

Task
N

Task1

Sequence

Task
n

Task
1

...

...

Split

Parallel

Task
N

Task
1

Task

Merge

Task
o

Task
n

Task
1

Tigres Templates

Sequence (name, task_array,
input_array)

Parallel (name, task_array,
input_array)

Split (name, split_task,
split_input_values, task_array,
task_array_in)

Merge (name, task_array,
input_array, merge_task,
merge_input_values)

Tigres: Research Scope

•  Programming interface to support workflows
•  Optimize execution semantics on HPC

systems
•  Provenance and monitoring at scale
•  Usability processes for API design and

development

Develop

Run Feedback

Design

Model/existing codes
translated to a Tigres

program

start(name=“MyWorkflow”)
...
split(name=“Split”...)
merge(name=“Merge”...)
...
end()

Tigres provides a “library” to support the
iterative workflow development

User API

State
Management

Execution
Management

Core API

M
on

ito
rin

g

Tigres data model

Develop

Run Feedback

Design

May be a partial
recovery run

Desktop

HPC

Tigres provides a “library” to support the
iterative workflow development

User API

State
Management

Execution
Management

Core API

M
on

ito
rin

g

Develop

Run Feedback

Design

G LO
G

Program state
available during and
after runs

Tigres provides a “library” to support the
iterative workflow development

User API

State
Management

Execution
Management

Core API

M
on

ito
rin

g

Failure Recovery from logs

Monitoring
API

Execution
logs

Workflow
Recovery

Workflow
recovery activated

Parallel Sequential Performance Improvement

Template Time: ~11%
Resource Usage/Wastage: ~65%

T1

T2
T1 T2 Tn

T1

T1 T2 Tn

T1 T2 Tn

T1

T1

T2
T1 T2 Tn

T1

T1 T2 Tn

T1 T2 Tn

T1

T1

T2
T1 T2 Tn

T1

T1 T2 Tn

T1 T2 Tn

T1

T1

T2
T1 T2 Tn

T1

T1 T2 Tn

T1 T2 Tn

T1

Requirements
Gathering

Design

Develop & Test

Release

Traditional
Software Development

Construct a
hypothesis

BUILD: Design the
experiment

MEASURE:Test
the hypothesis

LEARN: Analyze
data and prove or

disprove
hypothesis

Research

Learning about the user as part of our process

Requirements
Gathering

Design

Develop & Test

Release

Traditional
Software Development

Construct a
hypothesis

BUILD: Design the
experiment

MEASURE:Test
the hypothesis

LEARN: Analyze
data and prove or

disprove
hypothesis

Research

Learning about the user as part of our R&D

Build software
(what you want to

learn)

Test and measure

Learn and iterate/
pivot

Adapted from:
The Lean

Startup Method

User-Centered Design Process [1/2]

•  Usability studies provides semi-structured feedback
from end-users
–  Not the same as requirements gathering
–  Limited literature on doing usability for APIs

•  Round 1: Paper API & Google Docs Coding Session
–  Goal: Nomenclature and desired features
–  Topics from study: Concept understanding by user,

Changes to Nomenclature, Support in C also important,
Priorities for first prototype, Desktop to NERSC, Monitoring,
Intermediate state management

–  Priorities: Nomenclature, Monitoring, Dependency syntax, ..

T1

T2
T1 T2 Tn

T1

T1 T2 Tn

T1 T2 Tn

T1

T1

T2
T1 T2 Tn

T1

T1 T2 Tn

T1 T2 Tn

T1

T1

T2
T1 T2 Tn

T1

T1 T2 Tn

T1 T2 Tn

T1

T1

T2
T1 T2 Tn

T1

T1 T2 Tn

T1 T2 Tn

T1

User-Centered Design Process [2/2]

•  Round 2a: Online Questionnaire after trying out
Tigres
+  67% said it was good and close to what they expected, 33%

said it is definitely useful but needed to try it out
+  20% thought it required more code than what they expected
–  80% said minor learning difficulties
–  40% said they would like more control

T1

T2
T1 T2 Tn

T1

T1 T2 Tn

T1 T2 Tn

T1

T1

T2
T1 T2 Tn

T1

T1 T2 Tn

T1 T2 Tn

T1

S2

S1

ParallelSequential

Building Blocks

•  Round 2b: Interview and Post-task
walkthrough
-  Support for nested templates
-  Investigation of running loops in Tigres
-  Difficulties with PREVIOUS syntax (including

missing documentation)

Extensive Evaluation using Scientific and
Synthetic Workflows
•  BLAST

–  Bioinformatics workflow
–  One Parallel and two Sequences
–  120 to 1800 tasks, Python executable

•  CAMP
–  Satellite image re-projection
–  Two parallel and one sequence
–  ~6000 tasks, Python executable

•  Montage
–  Astronomical Image Mosaic Engine
–  Three Parallel templates and two Sequences
–  C executables

•  SNe Simulation
–  Cosmology
–  Python executable and functions

Create
Universe

Create
SNe

C
re

at
e

Li
gh

t C
ur

ve
s

C
re

at
e

Li
gh

t C
ur

ve
s

C
re

at
e

Li
gh

t C
ur

ve
s

C
re

at
e

Li
gh

t C
ur

ve
s

C
re

at
e

Li
gh

t C
ur

ve
s

C
re

at
e

Li
gh

t C
ur

ve
s

Fi
t

Li
gh

t C
ur

ve
s

Fi
t

Li
gh

t C
ur

ve
s

Fi
t

Li
gh

t C
ur

ve
s

Fi
t

Li
gh

t C
ur

ve
s

Fi
t

Li
gh

t C
ur

ve
s

Fi
t

Li
gh

t C
ur

ve
s

Fit
Cosmology

(not completed
because scientific

algorithms are still be
worked on)

SNe workflow

Experiences

•  Setup of workflows is still tedious
-  libraries, diversity of resources

•  Is portability from desktop to HPC achievable?
-  Code is not always developed for HPC
-  Queues policies and file system etc need to be understood
-  Understand characteristics for performance optimization

•  Achieving efficiency is not trivial
-  Need to account for performance variability
-  Python setup performance (now improved at NERSC)
-  Different file systems’ performance needs to be considered
-  [How our allocation “BLAST”-ed out]

Summary of Workflow Status [@ Tigres Level]

Workflow Status Count
Interrupted (Task failures in

log) 18 1%
Interrupted (No failures

recorded) 81 4%
Never started 169 9%

Failed (finished with failed
state) 139 7%

Success 1575 79%
Total 1982

Summary of Job Status [@ Job Script Level]

Some Jobs have more than one workflow. 1982
workflows were submitted in 1160 jobs

Main Error Error Detail HPC Jobs % HPC Jobs

Killed Job Job-level 95 8%

 Terminated (Something or someone) 23 2%

 Wall-time Exceeded 72 6%

Task Failure Workflow-level 137 12%

 Missing Files 104 9%

 Error Opening File 6 1%

 HPC Config 5 1%

 FTP Error 10 1%

 Other Errors 12 1%

User Error Both levels 13 1%
HPC Error Job-level 78 7%

 Broken Pipe 6 <1%

 IO Error 4 <1%

 Other 16 1%

 caught signal terminate 52 5%

Unknown No error file/output 68 6%

Tigres: Feature Set
•  Iterative workflow development

–  Simple data model
–  Python API to compose and execute
–  Use programming language constructs for complex logic flows

•  Execution
–  Existing application binaries, functions
–  Seamlessly run on Desktops, Clusters and HPC

•  Monitoring, Provenance
–  Visual representation of graph that ran
–  Extensive monitoring from workflow execution
–  Support for adding user-level provenance

•  Extensive documentation, examples and tutorials
•  Recover failed workflows from logs (Limited)
•  C API (Limited)

Tigres data model

Some Research Topics

•  Active Code Generation
•  Intelligent and Improved workflow management

–  Can we pipe the intermediate data ? (
–  Python backend is not optimal
–  C++/MPI could help in some cases and not others

•  Deployment Configuration: Tigres + Shifter
•  Better failure detection and reporting
•  Synergistic

–  Workflow Scheduler at the Batch Queue Level
–  Managing data space for science workflows
–  Managing elastic environments for science workflows

Use of Tigres

•  CAMP – Re-projecting MODIS data for 2010-2014
•  TAKO - image processing software, SNe simulation group
•  ARES/BDC – analyses pipelines for processing background

radiation data
•  Earth system simulation
•  Inria Associated Team (frontend for HOCL)

Tigres

Lessons Learned: Template Interface
•  Python interface was very attractive for many of our

early users
•  Template interface was also attractive for simple DAGs

–  Is there a specific way I should split my workflow into
templates?

–  Very few cases where they had unusual DAGs
•  Nested templates was a key feature request

–  ParallelSequential was a good example
–  General nested template needs more

•  Template/Interpreted language – no global view of
DAG and other programmatic modifications to data.

Lessons Learned: Straddling the Research and
Software Development Boundary

+ User-Centered design process enabled us to receive
valuable “early” feedback

+  The user-centered design process forced us to
address S/W development lifecycle in a research
project early

?  Users wanted access to software which presents
challenges in a research project.

?  Need to reduce the time in the cycle of build, measure,
learn and balance the cycles of learning about the user
and CS research

Looking forward …
•  Tigres provides a good foundational tool for many

users and experiments
•  Developing and communicating best practices

–  User-centered approaches for software/middleware
development

–  Lot of what we have learned are lessons for users outside of
workflow tool (e.g., Python is not suited for all tasks)

•  Near-term research
–  How are we going to support programming “data” workflows?
–  Human-in-the loop issues

•  Long-term: “workflow tools” need to disappear
–  More support at infrastructure level and application

programming models?

More Information

•  This work is supported by the DOE Office of Science
(Office of Advanced Scientific Computing Research)

•  Tigres Team
–  Lavanya Ramakrishnan, Valerie Hendrix, Sarah Poon, James

Fox, Gary Kushner
–  Ryan Rodriguez, Daniel Gunter, Gilberto Pastorello, Deb

Agarwal

•  Lramakrishnan@lbl.gov

•  http://tigres.lbl.gov

Tigres C

•  Current Implementation
–  C API with a Python backend
–  Macros used to define functions
–  The fully expressivity of PREVIOUS is not implemented

•  Food for thought
–  Performance of Python
–  Parallelization of functions and Deserialization of data
–  C does not posses a runtime type introspection (Do you

manage to keep consistency with Python?)
–  Usability - “Pythonic”/C-like code

